2018-10-24 10:13:26
在近几年的行测考试中,比赛问题常常出现,比如:在2017年河南省考中考了2题。一般情况,比赛问题与概率问题相结合,有时也按单独命题。根据比赛规则,比赛问题主要分为淘汰赛和循环赛。接下来就跟着学习这类问题的知识点和应用吧!
一、核心知识点
淘汰赛:在这种赛制中队员两两比赛,输一场即淘汰出局,每一轮淘汰掉一半选手,如果出现奇数个队员会出现一个队员(即种子选手)轮空,直至产生最后的冠军。比赛中有个N个队员,若要决出冠亚军需比赛N-1场次;若要决出第1、2、3、4名需比赛N场次。
二、比赛问题的应用
例1.有101名乒乓球队员进行冠军争夺赛,比赛采用淘汰赛,决出冠亚军,问需要比赛多少场次?
A.98 B.99 C.100 D.101
【中公解析】比赛中有个101个队员,若要决出冠亚军需比赛101-1=100场次,选C。
例2.140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进入下一轮。问夺冠的球队至少要参加几场比赛?
A.3 B.4 C.5 D.6
【中公解析】140支队伍两两一组,分成70组,比赛70场,淘汰70支队伍,剩余70支队伍;70支队伍两两一组分成35组,其中一支队伍轮空,让冠军轮空,淘汰17支,剩余18支队伍;依次分组,只要剩余奇数个队伍就让冠军轮空,剩余队伍数依次70-35-18-9-5-3-2-1,只要剩余队伍数是偶数,冠军就要参加比赛,至少参加3场比赛,故选A。
例3.某篮球比赛有12支球队报名参加,比赛的第一阶段中,12支球队平均分成2个组进行单循环比赛,每组前4名进入第二阶段;第二阶段采用单场淘汰赛,直至决出冠军。问亚军参加的场次占整个赛事总场次的比重为:
A.10%以下 B.10%-15% C.15%-20% D.20%以上
希望每位考生都能按部就班地复习,逐渐掌握各个题型和解决方法,顺利攻克数学运算问题。