位置:有考网 > 学习辅导>高中辅导> 株洲教学专业的高中数学辅导班  正文

株洲教学专业的高中数学辅导班

发布时间:2024-09-12 08:50:26来源:有考网综合

高中补课对于高中生来说确实非常必要,而且在一定程度上直接影响了高中生的成绩,因为通过补课可以更好的强化大家的学习能力也能了解到高中阶段的一些具体的学习方法,这对于提高成绩来说会有很好的帮助。

如何提高学习兴趣
建立联系
学生可以试着把自己平时喜欢的事情加入到课本知识里面建立某种联系,这样就可以逐渐建立学习自信心和动力。
三种问题模式
多用“为什么”、“怎么样的过程”和“实际作用是什么”的三种问题模式进行学习。当通过自我提问的方式学习就会引发自己的深入学习和思考。
培养学习兴趣
通过对未来理想的规划培养学习兴趣,这些问题都是想让学生自己产生思考,这样是有利于学生身心健康发展。
6大环节 环环相扣
  • 01
    前期沟通咨询面对面沟通,了解学生个性特点。
  • 02
    科学完善评估对学生学习情况进行科学完善的评估。
  • 03
    根据学生个性特点、需求定制个性化学习计划。
  • 04
    面对面授课因材施教,知识梳理,专项训练。
  • 05
    面对面授课因材施教,知识梳理,专项训练。
  • 06
    监测评估监督指导,及时反馈、修订方案。
校区风采
  • 服务前台+
  • 服务前台+
  • 走廊过道+
  • 走廊特写+
严选教师 实力团队
01
2轮面试+多次试讲+多年教学经验
参加学大招聘,需有多年教学经验,经过精挑细选,进入2轮面试、初次试讲环节。
02
历经“两阶段+三层次+四结合”培养考核体系
通过初次试讲,参加1-3个月统一专业培训,考核通过成为学大老师,通过“两阶段、三层次、四结合”培养体系的考核,方可继续授课。
03
科学系统专业授课 教学方法精益求精
授课环节上,多方监管,保障每节课的效率和质量;教学方法上,反复锤炼,精益求精。
面对面课程
打破传统教学
01

上课时间自由,可根据学生时间随时调整。

真人老师教学
02

为每个学生制定个性化学习方案。

师资教研团队
03

师生面对面,学习精力集中、实时答疑解惑。


株洲教学专业的高中数学辅导班!学大教育会针对不同的学生,制定个性化的辅导方案,是专业个性化教育,一个学生享受一个教师团队,上课期间是一位老师针对一个学生授课,课后还会有专业的陪读答疑,学生可以在我们校区写作业和自习,我们有学习管理师和陪读答疑老师全程管理和跟踪。

株洲学大高中数学培训班

教学特色

1.授课时长合理,小班一对一教学。

2.针对性教学,夯实高中数学基础。

3.老师个性化教学,教学方式多样。

课程内容

1、针对学生当前的数学水平和解题能力,制定针对性的提升目标和学习计划,帮助学生查漏补缺。

2、讲授高中数学的基本知识、重要原理、公式和解题思路,让学生掌握高中数学常用解题方法。

3、梳理高中数学知识体系,通过高度提炼的知识讲解和题型归纳,帮助学生巩固高中数学知识,提高解题能力。

4、归纳总结高考数学知识的重点和难点,结合历届高考试题的训练和分析讲解,让学生熟练掌握高考数学试题的解题思路、方法和技巧。

5、讲授高中数学常用的选择题、填空题解题技巧,提高学生的解题速度和准确度,提高应试技巧与应试水平。

6、在熟练掌握高中数学重点知识的基础上对学生进行进步训练,讲解高考难题的分析解题方法,让学生具备挑战高考数学140+和的能力。

高三数学课程有哪些内容?

函数

函数的概念及其表示:函数三要素:定义域、值域、解析式

函数的基本性质:单调性、奇偶性、周期性、对称性

指数函数:分数指数冪的概念,有理数指数冪的运算性质,指数函数的概念、图像、运算性质

对数函数:对数的概念、性质,对数函数的性质、图像及运算性质

幂函数:幂函数的概念、图像与性质

二次函数:二次函数的顶值讨论,根分布

函数图像及其变换:函数图像及其变换,抽象函数

函数与方程:二分法,零点定理

直线、平面、简单几何体

空间几何体的三视图和直观图:柱、锥、台、球及其简单组合体的结构特征、三视图、直观图

空间几何体的表面积与体积:棱柱、棱锥、台、球的侧面展开图、表面积和体积的计算公式

空间点、直线、平面之间的位置关系:空间直线、平面位置关系、四个公理、一个定理

直线、平面平行的判定及其性质:直线和平面的位置关系、直线与平面平行的判定定理和性质定理、两个平面平行的判定定理和性质定理

直线、平面垂直的判定及其性质:直线与平面垂直的判定定理和性质定理、两个平面垂直的判定定理和性质定理

三角函数

任意角和弧度制:任意角的概念,弧度的意义,能正确的进行弧度与角度的换算

任意角的三角函数:任意角的正弦、余弦、正切的定义

三角函数的基本关系、诱导公式:同角三角函数的基本关系式,正、余弦的诱导公式

三角函数的图像与性质:正弦函数、余弦函数图象和性质;周期函数

升降幂公式:二倍角的正弦、余弦、正切公式;能正确运用三角公式进行三角函数式的化简、求值和恒等式的证明

更多培训课程: 株洲芦淞神农高中补习课程 更多学校信息: 株洲学大教育芦淞神农校区 咨询电话:

相关内容: 株洲高中数学辅导班 株洲高中培训班 株洲学大教育

同类文章